Power bills as sources of math questions.

I’ve been thinking a lot about graphs lately, and how in general, many people are deceived by graphs because they don’t understand numbers, scale, sampling size, etc.  In this very contentious political time, it seems many people are fooled by the statistics they “see” graphically.  In my last post, I quoted Dan Finkel’s line “when we are not comfortable with math, we don’t question the authority of numbers”, specifically referencing people’s willingness to believe statistics they see or hear because they don’t really understand where these numbers came from or what they represent.

We can help our students get a better sense of statistics and numbers by providing them as many opportunities to explore, in context, graphs and statistics and ask questions and make sense of these. That could mean exploring all the statistics and poll results currently happening with the presidential election.  Or looking at weather predictions. As I looked at my power bill yesterday, I realized how easy this type of access to real numbers can be, as I stared at the graphical representation of my gas and electric over the past 13 months. (There is also a numerical table showing daily use of kilowat hours (kWh) and 100 (C) cubic feet volume of gas (Ccf). There alone is a whole bunch of mathematical calculation/conversions/ratios).  What I love about my graphical representations is there is a 13 month trend – so I can see where my usage was last year at the same month, and then see how my usage has changed throughout the year.  Below are my December & January graphical representations for both gas and electric usage.

ELECTRIC:

December Electric

December Electric

January electric

January Electric

 

GAS:

December Gas

December Gas

January Gas

January Gas

 

Just from these graphs, there are a lot of assumptions that can be made, and questions that could be asked, that would then lead to more exploration.  For example, December electric from 2014 and 2015 is about the same, but January 2015 is significantly less than January 2016 – why is that? (hint: my children are home for break, so we use more electricity). Gas use in December of 2015 was much lower – was this because it was warmer in December? Are we having a warmer winter than last year? The gas bills seem to show that – but, we could then go look at the weather temperatures for the same time frames in the area I live and see if there is a correlation between temperature and gas usage (i.e. heat). Why is the electric so much more in the spring/summer months and gas is lower? There are so many questions, and, if we brought in the tables of daily usage, cost of kWh and Ccf (volume) we could be doing math calculations, comparing costs, etc. Maybe compare bills from last year to this year and see if the price in oil/gas has had an impact on the overall monthly charge. I like the idea of bringing in the weather and comparing to the electric/gas usage. You can get average weather for the area you live in pretty easily, but it would be even better for students to collect actual temperatures over time and make their own graphs and comparisons.

2016-02-26_12-00-35

Average Climate Chart

The point I am making here is that a simple thing like a power bill can be a powerful tool for visualizing math, doing math, making connections, and asking questions. Or try looking at some statistics from car sales or stocks or polls on the presidential election. It leads kids to ask interesting questions, explore mathematics they care about, and opens them to the real-world aspect of mathematics and how numbers can be used to inform, deceive, and help make decisions.  These types of explorations are interesting and help students become involved in the world around them as well and better prepared for the realities of things like gas bills! Anyway, just another suggestion on how to bring some context into your math instruction in a relatively easy way.

 

 

 

 

 

 

 

 

 

 

Advertisements