Solving equations is a skill that students are expected to be able to do in pre-algebra and beyond. If we look at the Common Core State Standards, these skills actually come into play starting as early as 6th grade, with students expected to solve one-step equations and progressing to systems of equations by 8th grade. An important aspect of solving equations is connecting a real-world context to these and understanding what the ‘solution (s)’ mean in terms of that context.

The use of calculators or technology to help students solve equations is a controversial one at best, and as a math teacher, I do believe that students need to know the processes to solving equations without the use of technology first. But – when we get down to real-world application and problem-solving, the technology becomes a tool that allows students to go beyond just “getting the solution” and to making meaning out of those solutions, and using their solutions to make decisions – which is the ultimate purpose of finding those solutions, right? In these cases, I firmly believe that the use of technology, (more often than not a calculator), is a necessary tool so that students deepen their understanding and are not bogged down in the process of the calculation. Part of the practices – “use appropriate tools strategically”.

As an example, let’s consider a simple real-world context that involves solving a system of equations, something required by the time students reach 8th grade (see Common Core Standards). Let’s say a scientist is mixing a saline solution and has one solutions that is 10% saline and the other 25%. He needs to make a 85 ml bottle that is 15% saline. How much of each of the two solutions should he mix to create the 85 ml bottle of 15% saline? This requires our two equations, with x = the amount of 10% solution and y= the amount of 25% solution.

- x + y = 90 ml
- .1x + .25y = 12.75
*(15% of the 85 mL saline)*

Perhaps students are actually in science class doing a lab and creating this new solution. While it would be reasonable to do this by hand using substitution, if this is part of an experiment, then using a calculator to get the answer quickly and therefore get on with the experiment might be a more logical step, especially when time is of the essence in classes. I am going to demonstrate on the fx-991Ex how to solve this problem. I am using a scientific calculator because in middle school, students are more than likely going to have access to these versus a graphing calculator. This video shows how you can quickly solve the simultaneous equations, and also, with the QR code capabilities, also see a graphical representation of the solution.

If a scientific calculator is all your students have access to, remember that they can do a lot more than you might think. I will explore more features of the ClassWiz in later posts as we continue to explore mathematics and using technology to support learning.