# Using Connections to Build Understanding

I am teaching a Geometry & Spatial Reasoning course for Drexel this semester for their math masters program for teachers. Absolutely love it because I am learning so much from my students/peers, but because it really is bringing home the importance of prior knowledge to help build connections and real-world connections in helping students learn versus memorize, and construct and reconstruct based on their ability to make connections.

My students, who are a mix of very new math teachers, experienced teachers, and even some career-switchers still in the early stages of teaching, are having this great discussions on the importance of using prior knowledge to help student make their own connections. Some have been doing this all along, but others, as they themselves struggle with some of the geometric concepts we are ‘learning’ (relearning in some cases), are coming to understand the value in helping students use what they know to build on and connect to new information. Makes it easier to recall, and builds a confidence in students that when faced with an unknown situation/problem, they have the skills and confidence to look at it, break it down or add in things to make the unknown familiar and then look for and make use of structure (see what I did there….Common Core Math Practice #7!) to help reach a solution or develop a new conjecture/conclusion.

As an example, we’ve been doing a lot of work with inscribed angles in circles and how do you help students use prior knowledge to build the idea that an inscribed angle is half the measure of it’s intercepted arc if you don’t want students just memorizing formulas? Basically, the conversations revolve around constantly using prior knowledge to make connections, which might mean you need to add in an auxiliary line to a given shape to ‘see’ something familiar (i.e. a linear pair or a triangle, as examples). A strategy that really helps students look for and make use of the structures they are familiar with to help them make sense of a problem.  Here’s an example of just one way to explore inscribed angles, using previously knowledge about triangles:

• In Fig 1, we have an inscribed angle and its intercepted arc a. How could you show that angle 1 (the inscribed angle) is half the measure of it’s intercepted arc? Here’s where students need to make sense of this structure – what prior knowledge can they use to help them?
• In Fig 2, they add in a radius (auxiliary line), because they know all radii in this circle (any circle are equal – doesn’t change the original inscribed angle….but now – we have a triangle and a central angle (angle 2).  What do they already know? Well, they know the central angle 2 is the same as the measure of the intercepted arc, which is the same intercepted arc as angle 1 (inscribed angle).
• In Fig 3, students are looking at the triangle created and using prior knowledge – we can mark the two radii equal, making this triangle an isosceles triangle, which they already know from prior knowledge has two base angles that measure the same (angle 1 & 3). Angle 2 is an exterior angle to the triangle, and angles 1 & 3 are remote interior, which they know from prior knowledge sum to the measure of angle 2. Since angle 1 & 2 are equal (isosceles triangle), that makes them each half of angle 2 (Sum divided by 2). Angle 2 is equal in measure to the intercepted arc, so angles 1 & 2 are each half of that, so the inscribed angle 1 is half the intercepted arc.
• Fig 4 shows that the relationship holds true even if you change the size of the inscribed angle.

This is of course just one example for an inscribed angle, but they can then use this to show that inscribed angles that are not going through the center of the circle have the same relationships – ie add in auxiliary lines, use linear pairs, or triangles or other known things to help make sense and show new things. Prior knowledge, connections – they really matter.

As teachers, it is our duty to make sure we are modeling and helping students use what they know to build these connections and see the relationships. It takes deliberateness on our part, it requires modeling, it requires setting expectations for students till it becomes a habit (habits of mind) to look for and make sense by pulling in previous knowledge.

Another thing we need to do is make connections to real-world. My students are sometimes struggling with this idea of relating prior knowledge and new ideas to real-world applications, but if you get in the habit, its not so hard to do. Since I am focused on circles and the lines that intersect them now with my class, I pulled up a ready-to-use lesson from Casio’s lesson library that is a great example of a real-world connection to circle concepts that would force the use of previous knowledge.  The lesson is briefly described below:

• – Use coordinate geometry to represent and examine the properties of geometric shapes.
• – Recognize and apply geometric ideas and relationships in areas outside the mathematics classroom, such as art, science, and everyday life.

This activity uses the Prizm Graphing calculator and picture capability to help build understanding.

The kinds of questions and connections to prior knowledge that can be asked of students just by looking at the image are pretty endless. What relationships do you see (i.e. lots of diameters, or straight angles, lots of central angles, all the angles are 360, are their auxiliary lines we could add to find the areas or relationships or angle measures, etc.).

If you look around, you can probably find a real-world example of most math concepts your are working on with your students. Show them pictures, show them real objects they can get their hands on. Start asking questions. Ask them what they recognize or think they already know. Ask them if they could add something or take away something to see a familiar object/concept. How does that help them? What relationships and connections help them get to something new or interesting?

My Drexel course and student are reemphasizing for me (and them) the importance of prior knowledge to help build connections on a continuous basis, all the time, every day. It helps students think mathematically and consistently use vocabulary and math concepts to deepen and create new understanding and relationships. It also promotes logical reasoning and problem solving – win-win!