Multiple Representations on the Casio Graphing Calculators

One of the key things we try to help students with when studying functions is the idea of multiple representations – i.e. graphical, symbolic (equation) and table.  Ideally, we want students to be able to discern what the function represents or looks at no matter what representation they are given, and to be able to find patterns and important components about that functions from all representations.  Students should never learn about functions just through graphing, or just through symbolic manipulations or just through looking at data points in a table – they should be able to go back and forth and determine which representation is the most useful for the situation.

Unfortunately, too often, the emphasis is on one representation at a time, or at most 2. Let’s look at the graph and find the minimum, maximum, or intersection. Or, let’s find the roots of a quadratic by factoring, or symbolic manipulation. Or, here’s a table of points, where are the x-intercepts or the y-intercepts? Ideally, we want students to be able to look at all of these representations simultaneously so that they see the relationships between the representations and come to understand what the points represent in the table, in the equation, or in the graph.

Technology is one way to show all these representations at the same time, and then quickly manipulate and explore. There are obviously many technology tools out there, but as I have stated in previous posts, the most accessible technology tool for most students and teachers is the graphing calculator, not only because of it’s affordability, but because it is a tool most students have readily available.  It would be nice if all students had computers or tablets for daily classroom use, but that is still NOT the reality.

I have put together a quick video showing Casio’s three graphing calculators – the fx-9750GII, the fx-9860GII, and the CG10/20 or Casio Prizm, and how they can display the equation, graph and table representations of a function on one screen. No matter which model you have, you can achieve the same functionality, allowing students to work with multiple representations and explore relationships quickly and efficiently.

Check it out:

Advertisements