“Speed ISN’T important in math. What is important is to deeply understand mathematical ideas and connections. Whether you are fast or slow isn’t really relevant.” – Laurent Schwartz, mathematician

If you haven’t seen the video by Jo Boaler and some of her Stanford students entitled “How to Learn Math: Four Key Messages”, you definitely need to. Besides the four powerful messages (which I will list below), it has some great stories and quotes, one of which is the one I have above. Jo Boaler has done powerful research and written some terrific books on mathematics and learning math (one of my favorites being “What’s Math Got to Do with It?” and the video about these four key messages in math is so interesting.

Here are the four key messages about learning math (I highly recommend you watch the video to clarify and define each message a bit more):

Everyone can learn math at high levels

Believe in yourself (your beliefs about your abilities actually changes the way your brain learns)

Struggle and mistakes are really important in learning math

Speed is NOT important

All of these speak directly to the way we still, sadly, often teach and learn mathematics. One that really struck out for me was #4, speed is not important. I remember my own daughters struggling with the timed math tests – i.e. you have a minute to try and solve 100 times tables, or complete as many addition problems as possible. Very stressful, very ridiculous, and to top it off, they were penalized with poor grades if they couldn’t reach the arbitrary goal of “x amount of problems in 1 minute”. It still goes on and students memorize and stress over these timed math drills. Why? It’s ridiculous. If we continue to do this to students, then they begin to believe they are bad at math (see #2 above), which leads to them thinking they can’t learn math (see #1), and therefore leads to them giving up when problems get tough (see #3). A self-fulfilling prophecy.

So – I ask those math teachers out there who continue to put pressure on students to perform mathematical skills in a timed matter, where speed is important – stop. Just stop. Focus on what mathematics should be – understanding why those calculations matter, what they are related to, how they help us solve real-world problems. Help students make connections.

I know I keep coming back to it – but the Common Core Mathematical Practices seem to embody these four key messages. No where in there does it say students have to be able to do ___calculations in _____ minutes. Math is NOT about speed – it’s about the struggle, perseverance, conjectures, connections, and applications that help students solve relevant, real-world problems and see the beauty and need for mathematics.

I am starting a monthly feature where I will be focusing on some specific math content areas and providing some resources, in the form of how-to videos (both calculator and Classpad.net) and some ready-to-use math lessons (either PDF or links, depending on the tool used). I know math teachers are always searching for resources that will help them provide more open-ended math activities, where students are collecting and using data, using multiple representations to analyze and solve problems, and where students have to make decisions and support their decisions with mathematics. And integrate technology as well! So, at least once a month I am going to be picking a math content to focus on and provide some technology options as well, sometimes both calculator and online, and sometimes one or the other, depending on content.

This week I would like to focus on quadratic functions and helping students use a real-world context to work with quadratics. I am going to utilize Classpad.net, which is FREE web-based dynamic math software where I can do statistics, graphing, and calculations in one place (geometry as well, but for this activity, our focus does not include geometry). I am using this technology for a few reasons:

It’s free, so all of you should be able to access the created activity, including your students, as long as you have a mobile device with internet access.

I am able to create a complete activity (i.e. directions, tables, graphs, and place for students to show work) in one place and then share it easily via URL.

Everyone who opens the activity can create their own copy of it (as long as you have a FREE account on Classpad.net) by duplicating into their account. Then you can modify, answer the questions, etc. and create it’s new URL to share with others (or for students to share with you). To learn more about duplicating activities, click here.

The Problem

You are fencing in a rectangular area of your yard to create a garden. You have 36 ft. of fencing, of which you plan to use all. You can cut the fencing into whatever lengths are needed, as long as you use all 36 feet.

What dimensions should you use for your garden?

The Lesson

I have created a shared paper on Classpad.net called Quadratic Functions – Area of a Garden which you can access by clicking on the title. The idea behind this problem is that there are actually multiple solutions since the question is rather vague. I did NOT ask what is the largest garden, so students can work on collecting and analyzing the data and come to different conclusions depending on what they think is important. Some might choose largest area for the garden, some might choose largest perimeter, some might only want a rectangle some only a square, etc. By leaving the question a little more open, you are giving students a chance to explain their reasoning and come to multiple solutions based on this reasoning.

In looking at the activity (click the link above), you will note as part of the lesson, students use multiple representations. They first use their prior knowledge about dimensions of a rectangle, perimeter, area, and an understanding of feet and inches to record different dimensions for the garden. In the directions, students are asked to create at least 10 different rectangular gardens that use all 36 feet of fencing, where some of the width and length dimensions are fractional/decimal numbers and where width is sometimes larger than length. They record their dimensions in a table to start with, and then use those table values to calculate area (and perimeter if they choose to do the Extra Challenge), and use those table values to create statistical plots (scatter plots), and from the scatter plots and tables, create functions and graph those functions to fit their data. At different points along the way (after the table and scatter plots, and then after plotting their functions), students are asked to answer the question about what the dimensions they would choose for their garden and back up their reasoning using the information at that time. The idea here is to help them see that each representation provides insight into the dimensions, and some representations help you be a bit more precise or see the relationships between the quantities a little better. And also, depending on your goal for the garden, your reason for choosing certain dimensions may differ from others. There is also an extra challenge at the end (this is a way to support students who finish early, don’t need as much teacher guidance, and/or want to explore more), where students explore how the problem might differ if there was a fixed perimeter.

ClassPad.net – Lesson In Action

This is a video that shows using the activity and parts of doing the activity to get a feel for how this looks with students. I would recommend students working in pairs or small groups (3-4). All students can be recording on their mobile devices, or if you have one per group, choose a recorder.

Other Quadratic Activities and or video links.

Here are a few more links that are focused on quadratic functions and also utilize ClassPad.net