Teachers Rock! Show Your Appreciation in a More Personal Way – Tell Them

It’s National Teacher Appreciation Week, for those of you not in the know. In schools everywhere, teachers are probably getting nice little ‘treats’ from parents and students, or having special lunches or breakfasts brought in, or being treated to free ice cream or nice messages or pep rally’s – lots of things to show how much everyone appreciates the work they do. Obviously these celebrations and expressions of gratitude vary around the country, but there is usually, based on my own personal experiences in middle and high school, some recognition for teachers at some point during this week.  Which is great. Teachers deserve to be told how wonderful they are and what a difference they make in students lives, because they do. They do every day, whether they or you realize it.

It’s the little things that teachers do every day, which often go unrecognized, that really make a difference in students lives and learning. That extra time put in to make a lesson really engaging, that eating in the classroom during lunch to spend time with students who just want to talk or get some help, the personal money spent on supplies and classroom decoration so all students have what they need and to make the classroom a welcoming place, the smile at the door as students enter, the late hours grading, the phone calls to parents to share good news about students (yes, teachers do that!)….there are too many to list here, but every day teachers are providing not only learning experiences, but emotional and physical experiences that help to mold and build students confidence and understanding. This is what I don’t think people who have never been teachers understand – teaching is unlike any other job. You can’t just come in, do the same thing every day, and go home at the end of the work day and forget about it. Teaching is more than teaching content. There is a lot of emotion and dealing with students on so many levels, and navigating that, along with teaching content, makes teaching one of the most difficult jobs out there.

Unlike many other jobs, teachers often never know the impact they had on their students. Sure, we can see grades and scores on tests, but that is a moment in time in a students life, and we don’t often ever know if what we did as teachers has long-term impact (which we hope) as students grow and move on. We think it did. We hope it did. But often, we never know. Unless a student comes back and visits, (or, we are now friends on FB, years later!) – we never really know if the things we thought would make a difference did in fact make a difference. Which makes teaching different from many other professions, who can usually see immediate results or impact of their job. Teaching is a profession of faith – where we believe our efforts are the best we can provide and are something powerful that contributes to our students potential future selves. And though we often never know, we do believe.

What I think would be a really powerful way to show appreciation during this week is for students, current and past, to let a teacher know what it is they are doing or have done that has an impact on them or helped them. Reach out to that Spanish teacher who made class funny, and embraced your obnoxious sarcasm, and influenced your decision to become a teacher yourself, or write that math teacher who helped you survive Calculus and helped you become an engineer, or that teacher who smiled at you every day and gave you a hug so that you loved coming to school. Get your kids to write a note to a teacher (now or in the past) that made school exciting or turned them on to reading or helped them perfect their dunking. It’s those little recognitions’, those personal recollections that really make a teacher feel appreciated and know that what they do is making a difference to someone. Those of you who have been out of school for a while, it’s pretty easy to locate a former teacher via FB or LinkedIn. Those of you still in school, write a note, even if anonymously – it will brighten that teachers day and reaffirm their commitment to teaching.

The U.S. Department of Education has shared some really great videos of teachers sharing what makes them feel appreciated, so I am providing links to those here:

  1. https://youtu.be/dLZXKu8fxnc
  2. https://youtu.be/eqi_kE31tZU

My favorite is what students say about their teachers though, so I am sharing that video here:

 

Advertisements

The Power of Math Exploration

If I had a dollar for every time I hear “I would do more hands-on, inquiry, problem-solving, collaborative learning, in math class if I ________________________ (insert any one of the following):

  • had more time
  • didn’t have as many students
  • didn’t have to get through the ‘curriculum’
  • had students who would actually talk
  • if I didn’t have to make sure they were ready for the test
  • if I didn’t have to review all the things they didn’t learn from last year…..
  • ….the list goes on…….

I would be a very wealthy woman. What is mind boggling to me is there is so much research out there that shows students do better when they learn for understanding and not for memorization, which means learning through context, through inquiry, through problem-solving, through struggle. Time is one of the biggest ‘road-blocks’ teachers throw out there, and granted, there definitely is a time crunch to get all the content in before those dreaded assessments. What I try so hard to get across to the teachers I work with, is that you can  save time by taking time – you actually can ‘cover’ more ground by teaching from a more contextual, experiential, problem-solving way. As students make connections and problem-solve, they are able to learn more efficiently and more than one concept at a time because they are working from a connected-math view point instead of the single-skill/concept at a time approach we traditionally provide.

An example from Geometry: (this is using Classpad.net, free math software) 

Concept – identifying polygons, and then what’s the difference between congruent-sided polygons versus regular polygons (identifying what a regular polygon is).

Activity: Using the drawing tool, have students draw examples of 3-side, 4-sided, 5-sided (and more….) polygons.  At least 2 of each kind that look ‘different’. Can be convex or concave

  • Have students compare their shapes noting similarities and differences and coming up with definitions – attaching specific words to their definitions like convex, concave, closed, etc.
  • Now have students use the arrow tool, and select one of their triangles, and the Adjustment menu to make all sides congruent. Then, choose a second triangle and Adjustment and make the shape a ‘regular’ polygon. What do they notice? Have them measure sides and angles and compare to others.
  • Do the same for two different 4-sided figures (so Adjust congruent, then adjust regular), the 5-sided, etc.  Each time compare the two on their paper, and then compare to others, and try to come up with what the difference is between congruent-sided polygons and regular-polygons.
  • Come to group consensus, and by the end of class students have manipulated, explored, collaborated and defined several things: polygons, convex polygons vs. concave, triangle, quadrilateral, pentagon,….regular polygon, congruent sides, etc.

An example from Algebra: (this is using CG50 Graphing Calculator (CG10 is similar):

Concept: Parent Function and Vertex From of a Parabola 

Activity: Students graph the parent function of a Parabola (y=x^2) and then graph another in standard form using variables for coefficients.

  • Have students use the modify feature of the graphing calculator to animate the different coefficients (one at a time)
  • Observe what changes in that coefficient does to the parabola by comparing the modified to the parent
  • Make conjectures and compare with other students till consensus is reached.
  • Do this with all the coefficients.
  • Have students then test out their conjectures by providing them several equations of different parabolas and, based on their conjectures, determine the shape, direction and location of the parabola BEFORE they do anything, and then test their guesses by entering in the calculator.
  • Time saver: Doing this activity with linear equations first will then give students a general understanding of transformations of functions which they then extend and solidify with quadratics, which then can be easily extended into other equations, like the absolute value function. Time saver!

Obviously I am using technology here, because technology allows for conjectures to be made and tested very quickly. But technology is just a tool that is appropriate in some instances, but there’s so much that can be done without technology as well. You can make math much more of an exploration just through your own questioning (i.e. why do you think? can you explain that more? Are there other ways to do this?) and by providing students a chance to puzzle things out on their own, ask questions, use tools (so objects, paper, pencil, etc).

One of my favorite things to do is to provide them with a situation that has lots of information, but no question (basically, find a rich math task, but don’t give students the question(s)). Students then write down all the things they notice, such as quantities, relationships, etc. and then come up with their own wondering’s and questions. Then you let them choose a path they want to explore (this works well with small groups or partners). Usually it ends up that there are several different questions and solutions generated and explored using the same information. When students then share their findings, you find that there is a lot of math going on, which leads to some really interesting class discussions – some you yourself might not have thought of. You can then maybe even give them the question that might have been given in the problem – by that time students may have already explored it and if not, by now they have a real sense of what information in the problem will help them and they are more willing to actually solve the problem.

The key here – students only become problem-solvers if they are given the opportunities to explore math, make their own connections, and collaborate with others to verify their thinking. The more you give them opportunities and provide tools and resources and challenging problems, the more efficient they become at using math, connecting math concepts, and viewing math as a connected whole instead of isolated skills and facts. Take the time….it’ll come back in the end.

 

 

 

Applying Prior Knowledge Is About Precise Mathematical Language

In the course I am currently teaching at Drexel University, we have been focused on the importance of addition and multiplication properties as students progress through mathematics. Particularly the idea of inverse numbers (additive inverses and multiplicative inverses),the additive and multiplicative identities, and the commutative and associative properties of addition and multiplication. A strong foundation in these concepts, which starts in elementary school and builds as students progress to more abstract and complex math concepts such as proportional reasoning, solving equations, composition of functions, and working with matrices, is really important. In fact, if we spent more time using precise language and justifying our reasoning with properties consistently, as we model and help students learn and discover, there would be a lot less confusion and much more connection of prior knowledge to ‘new’ concepts. Instead, we often provide a short-cut, or a ‘trick’ (with a cute acronym like KSP (keep, switch, flip) or ‘Cross-multiply-divide’ with no basis in the true mathematics. Students focus on memorizing isolated rules versus connecting new concepts and seeing learning as just an extension of prior knowledge.

Let me try to explain what I mean by providing a sense of prior knowledge and how it connects to more abstract concepts:

Prior knowledge:

  • Additive identity: 0 and the Additive Identity Property:  a + 0 = a (5th/6th grade)
  • Additive inverses create the additive identity – so -b + b = 0 or -c + c = 0 (5th/6th grade)
  • Multiplicative identity: 1 and the Multiplicative Identity Property: b*1=b or 1*b=b (5th/6th grade)
  • Multiplicative inverses create the multiplicative identity (i.e. a 1) = d * 1/d = 1 or -1/f *-f = 1 (5th/6th grade)
  • Addition and multiplication are commutative (switch the order and you get the same solution) (1st/2nd grade) and associative (switch the grouping and you get the same solution) (3rd grade)(this explains why we want to change subtraction to addition of the additive inverse number, and why we change division to multiplication of the multiplicative inverse (reciprocal) – so we can USE THE PROPERTIES!!!

Understanding the above, then makes solving equations easier – and we don’t need to avoid equations with fractions or decimals, because the properties apply to these rational numbers as well.

Example:  -5 = (1/3) x – 8

  1. Change the problem to addition of the additive inverse: -5 = (1/3)x + (-8)
  2. Add 8 to both sides (commutative property – can add in any order) because adding additive inverses (8 and -8) make zero (additive identity property)  -5 + 8 = (1/3)x + (-8) + 8
  3.  Group the inverses (associative property) and solve:  -5 + 8 = (1/3)x + (-8 + 8) which is equivalent to 3 = (1/3)x + 0  equivalent to 3 = (1/3)x
  4. Use the multiplicative inverse property (multiplying by the reciprocal will create a 1) and multiply by 3/1 on both sides:  (3/1)*3 = (3/1) *(1/3)x (commutative property allows us to multiply in either order on both sides).
  5. The multiplicative identity property says 1 times any number is itself, so we end up with 9/1 = 1 *x or 9 = x

*Note – we did not use subtraction or division at all – we used the understanding of inverses, identities, and addition/multiplication properties to explain. No tricks, and working with actual numbers (so fractions and integers) with justification for all steps.

Example: Solve the proportion  3/16 = x/20

  1. This is really an equation where the quantity x is being multiplied by 1/20. Understanding that I can use the multiplicative inverse to multiply by the reciprocal to make a 1, I multiply both sides by 20/1:
    • 20/1 * 11/12 = x/20 * 20/1 (commutative property lets me multiply in either order on both sides)
    • I can even decompose my multiplication and think about making ones through the same understanding: 4*5*3 /4*4= 1*x
    • 15/4 = x/1 or x = 3.75 (multiplicative identity)
  2. Note – the trick we often tell students to memorize is ‘cross-multiply and divide’, but if instead we focused on just applying their understanding of multiplicative inverse and making those 1 pairs, there would be less confusion, less forgetting the ‘trick’, and less applying that trick to other problems where it is in appropriate. 

Obviously I can’t demonstrate a whole course of study in one blog post – what I am really emphasizing here is how important consistent mathematical vocabulary and use of properties is, instead of acronyms, short-cuts, tricks, mnemonics, etc. that we often give students with no basis in understanding. Instead of seeing math as a connected whole, building on to prior knowledge as they move through the grades and topics, we treat it as isolated topics with no connection. It’s no wonder students think every year they are learning something new. If last year when they worked with division of fractions their teacher taught them to “Keep, Change, Flip”, and this year the teacher is talking about Ketchup Covers Fries or KSF….no wonder they are confused. None of these are grounded in the properties and vocabulary of mathematics.

What we should be doing instead is focus on applying properties and using the mathematical language/vocabulary/properties right from the very beginning and ALL THE TIME. So instead of disconnected acronyms of KSF or KCF,  they focus on extending their understanding of additive inverse, inverse operations with the inverse number and division of fractions ends up being just an extension of what they did with subtraction of integers – i.e. use your inverse operation with the inverse number. So dividing with rational numbers is just multiplication (inverse operation) by the multiplicative inverse (i.e. reciprocal), similar to subtraction being addition (inverse operations) with the additive inverse (opposite signed number) – same general idea, same vocabulary, and just building on prior knowledge.

Let’s stop dumbing down mathematics and use the words and properties that truly allow students to connect and look for those patterns and develop their own understandings and rules. Let’s get away from tricks and mnemonics as our ‘teaching’ method – instead, let students figure that out themselves through the use of precise math language and application of properties. Let’s start in elementary school. Use precise mathematical language (along with clarifying words of course, but always with (not instead of) proper mathematical language/vocabulary/properties).

Think about it – we wouldn’t change the Spanish word for grandmother (abuela) or the French word for bread (pain) to other words, because then how would we communicate and be understood by others speaking those languages? Why is it okay to change the words or use different words or tricks, instead of the using the math language and properties? No wonder students are often so confused or why teachers think they have to ‘reteach’ things every year – if we are not consistent with students in using mathematical language, we are in fact talking a different language to them. No wonder they so often seem lost and frustrated.

Geometry and the Holidays

The holidays are upon us, so of course it makes complete sense to look for geometrical connections. Or maybe that’s just me?

As a geometry teacher (just finishing up a Geometry & Spatial Reasoning course), I am seeing geometry connections everywhere. From the wrapped presents, to the origami ornaments, to the snowflake patterns, I am constantly looking for those real-world connections and easy (and cheap), ways to get students working hands-on with math.

We are all familiar with ‘holiday math’ problems that connect to wrapping presents – i.e. how much wrapping paper do you need, how much ribbon, etc. Area, surface area, linear length connections all very obvious. But, as a geometry teacher, I am also curious about the gift boxes themselves. I know it is often difficult to find 3D models for learning, so boxes provide a cheap way to provide students hands-on explorations of nets, area, surface area, volume. So – teachers – get your students to bring in boxes after the holidays – so much you can do with these!!

Another thought – origami. This time of year, teachers often create holiday decorations with their students with paper-folding, which is fun, obviously, but can also be a great way to apply many math concepts. Shapes, fractions, and transformations for example. Take the following two origami designs – a star and a tree. As you are folding, you could be having students think about the individual shapes, but also the dimensions, the fractional parts after making a fold, what types of transformation have occurred – even congruence and corresponding parts.

money-origami-star-finishedIstep-step-instructions-how-to-make-origami-star-toy-cartoon-cute-paper-steps-84628139

For example, in the star above, after folds #1, what fraction of the square does each smaller square represent? When we fold that triangle in #2, what type of triangle is it? What fraction of the original square is represented in that yellow triangle?  What type of transformation does each fold represent? Are the triangles in #3 and #4 congruent? How do you know?

images (1)step-step-instructions-how-to-make-origami-christmas-tree-illustration-67138886

Again, looking at the tree folding above, what shapes do you see in #1? What fraction of the whole paper is each shape (so squares and triangles)? How about in #2? And which shapes are congruent? How do you know? Lots of great math, that you could really explore with students while they are also doing a fun hands-on activity.

Hopefully you can use some of these ideas with your students. Have a wonderful holiday season!!

Origami – The Math Behind the Paper Folding

I am about to start teaching an online geometry course, and it has me missing some of the things I use to do with my students to help them discover relationships, and work with angles and symmetry, which was origami. Origami is the art of paper-folding – and using it in geometry is a great hands-on and visual tool to help students discover angle relationships, symmetry, linear relationships.

Origami is something I am sure most of you are familiar with and maybe have even attempted to create some origami art yourself. I have two friends who are origami wizards and often post their creations on FB – and it’s pretty amazing the shapes they create. When I recently went to the Museum of Math in NYC there was a whole exhibit devoted to Origami.

In my class, obviously, we did relatively simple constructs – folding one piece of paper into things like cubes, birds, shapes. The focus being on the folding and shapes created from each fold and looking at the angles and relationships that developed after each fold. But – as I have discovered, there is some really complex math behind origami, and really complex shapes that are created all from one sheet of paper that are simply astounding. I just found this Ted Talk from 2008 by Robert Langdon that discusses the mathematics behind Origami and how because of mathematics, folds that before were impossible are now possible, allowing for origami constructions that are astounding. Those of you who teach geometry, I think this will be very interesting to you, though I think other math subjects as well will find some applications. At the end of the video there is also a link to some templates for folding some more intricate origami constructs.

 

CG50 – What Are All Those Apps?

As many of you know, I post quick videos in the blog to show different things about the Casio calculators or math or teaching. Many of these are posted on my YouTube Channel. I will occasionally get comments from viewers asking questions, and I do my best to answer them. If I can’t answer the question, I find someone who can, or research until I do have a response. Just the other day, when I was asked “how do you use the constants on the CG-50 calculator”, I was not quite sure what was being asked, since I tend to use the calculator from a mathematics teaching perspective, and hadn’t explored using constants (from a science perspective) and wasn’t even sure what was meant by the ‘constants’ in this particular question (as it could mean the constants in a given equation).  Turns out the viewer was asking about the Physium Menu/App on the calculator, and how to get the constants from these tables and values into calculations. This is something I have honestly never used because I am not a science teacher and therefore rarely, if ever, have need for this app. But – it got me curious and seeking out an answer (which I did find and explore so I could give a reasonable answer).

In my ignorance, I realized that there are many apps on the CG50 (and other Casio graphing calculators) that I have never really explored, not just the Physium App. Mostly I focus on the most-used menu items – Run Matrix (to do calculations), Graph (to work with functions and graphs), Table (functions using table representations), Equation (solving equations), and Picture Plot. But there are a lot of other menu items that I need to explore and learn to utilize since they all are useful for different contexts and applications. This is now a goal of mine – to try to learn and explore the basics of the other menu items (apps) of the CG50 (and other) graphing calculator, starting with the Physium Menu/app. Here’s what I have discovered:

The Physium application has the following capabilities (so science teachers, take note!!)

Periodic Table of Elements

  • You can display the periodic table of elements
  • The table shows the elements atomic number, atomic symbol, atomic weight and other info
  • Elements can be searched for by element name, atomic symbol, atomic number or atomic weight

Fundamental Physical Constants

  • You can display fundamental physical constants, grouped by category to make it easier
  • You can edit the physical constants and save them as required
  • You can store physical constants in the Alpha memory and use these saved constants in calculations in the RUN-MAT menu/application

Now, I am still not a science teacher, so this would not be a menu item I will use often, but I wanted to do a quick video of what I discovered in my own exploration.  And – there is a link to the how-to guide for the Physium Menu/App for those of you interested in exploring more. If you have a CG10 or other graphing calculator from Casio and don’t have the Physium menu/app, you can download it here.

 

Elevators and Number Sense

Number sense should develop early, and what simpler way to do it then to start with elevators?

Elevator, Vicenza, Italy

Why elevators you ask? Well, I just returned from 2 weeks in Italy. Partly for work: training elementary math teachers in Vicenza, Italy on College & Career Ready Standards for UT Dana Center International Fellows and Department of Defense Education Activities; and partly for leisure: touring Venice, Cinque Terre, Florence, Tuscany and Rome with my husband, sister, and brother-in-law. The first thing I noticed was the elevators have negative numbers to indicate those floors below ground zero (i.e. what we usually call floor 1 or Lobby in the U.S.)   It’s not the first time I’ve noticed this – in England, in Paris, in Germany – all these other countries indicate on their elevators the ground floor to be 0, the floors above ground 0 are 1, 2, 3…. and the floors below ground zero are -1, -2, -3….

This way of numbering elevators makes sense. Much more sense than Floor 1, or Lobby and then Basement, Basement2 (or LL1, LL2) – which is our typical way of indicating the ground floor (1) and the floors below ground level (Basements/Lower Levels). If you were a young child living in these countries and taking the lifts (or elevators), you are regularly exposed to integer numbers – with a contextual connection that the ground floor of a building is ground 0, and the floors below the ground are negative numbers, and the floors above the ground are positive numbers. It may not even be explicitly explained to young children, though they would be using the terms ‘negative 1’ or ‘negative 2’ to go down below the ground floor. They will have this repeated exposure so when they are ‘officially’ taught about negative numbers in school, they have an immediate connection to prior knowledge about the numbers in an lift/elevator and can make a real-world connection. Negative numbers won’t be new or hard to understand because it’s just the numbers in the elevator. Or – the numbers of the temperature, because let’s not forget, these countries also use the Celsius temperature scale, where freezing is 0, and anything above 0 degrees is above freezing and getting warmer (positive) and anything below 0 degrees is getting colder (negative). The further from 0 in either direction, the warmer or colder you are – again, real-world connection and a contextual understanding of integers.

Number sense. Number lines. Integers. Real-world connections. Just from elevators and temperature scales.

This repeated exposure, informal as it may be, is developing an intuitive understanding of numbers and their real-world meaning. And when students are then exposed to number lines and positive and negative numbers more formally, in a school setting, they already get what that means because it is familiar to them. They can apply what they already know to ‘mathematics’. The formalization makes sense, and connections make sense, and understanding is that much deeper.  This is different in the U.S., where students often struggle with the idea of ‘negative’ numbers and number lines and the distance from zero because we are teaching them something new.  We don’t have a real-world exposure to negative numbers because we use LL or B1 to represent lower than 0, our ground floor is never called 0, it’s 1 or Lobby or G (ground). Our temperature doesn’t have 0 as the freezing mark – it has 32 degrees Farenheit. Think how much easier it would be to connect negative numbers (those numbers smaller than zero) to negative floors or negative temperatures. Freezing makes sense at 0. Negative temperatures are colder than freezing. Positive temperatures are warmer than freezing. 32 degrees – not quite the same one-to-one connection to a number line, is it?

Anyway – my point is that something as simple as changing the numbers on an elevator to integer representations would go a long way in helping young children develop number sense early on so that by the time they get to school, they already have a natural understanding of positive and negative numbers. Early on they would be exposed to the idea of 0 being the ground level, positive numbers mean higher floors or farther away from ground zero, and negative numbers mean lower floors, below the ground, and the further you go below ground, the more negative you get, the farther away from zero you are. Number lines would then be ‘recognizable’ because there’s a contextual connection. (If we could change our temperature scale to Celsius that would be great too, though that one is a lot harder to do).

Relabel elevator buttons to reflect numbers on a number line – a simple change that could go a long way in developing informal number sense in children.