CG50 – What Are All Those Apps?

As many of you know, I post quick videos in the blog to show different things about the Casio calculators or math or teaching. Many of these are posted on my YouTube Channel. I will occasionally get comments from viewers asking questions, and I do my best to answer them. If I can’t answer the question, I find someone who can, or research until I do have a response. Just the other day, when I was asked “how do you use the constants on the CG-50 calculator”, I was not quite sure what was being asked, since I tend to use the calculator from a mathematics teaching perspective, and hadn’t explored using constants (from a science perspective) and wasn’t even sure what was meant by the ‘constants’ in this particular question (as it could mean the constants in a given equation).  Turns out the viewer was asking about the Physium Menu/App on the calculator, and how to get the constants from these tables and values into calculations. This is something I have honestly never used because I am not a science teacher and therefore rarely, if ever, have need for this app. But – it got me curious and seeking out an answer (which I did find and explore so I could give a reasonable answer).

In my ignorance, I realized that there are many apps on the CG50 (and other Casio graphing calculators) that I have never really explored, not just the Physium App. Mostly I focus on the most-used menu items – Run Matrix (to do calculations), Graph (to work with functions and graphs), Table (functions using table representations), Equation (solving equations), and Picture Plot. But there are a lot of other menu items that I need to explore and learn to utilize since they all are useful for different contexts and applications. This is now a goal of mine – to try to learn and explore the basics of the other menu items (apps) of the CG50 (and other) graphing calculator, starting with the Physium Menu/app. Here’s what I have discovered:

The Physium application has the following capabilities (so science teachers, take note!!)

Periodic Table of Elements

  • You can display the periodic table of elements
  • The table shows the elements atomic number, atomic symbol, atomic weight and other info
  • Elements can be searched for by element name, atomic symbol, atomic number or atomic weight

Fundamental Physical Constants

  • You can display fundamental physical constants, grouped by category to make it easier
  • You can edit the physical constants and save them as required
  • You can store physical constants in the Alpha memory and use these saved constants in calculations in the RUN-MAT menu/application

Now, I am still not a science teacher, so this would not be a menu item I will use often, but I wanted to do a quick video of what I discovered in my own exploration.  And – there is a link to the how-to guide for the Physium Menu/App for those of you interested in exploring more. If you have a CG10 or other graphing calculator from Casio and don’t have the Physium menu/app, you can download it here.



Elevators and Number Sense

Number sense should develop early, and what simpler way to do it then to start with elevators?

Elevator, Vicenza, Italy

Why elevators you ask? Well, I just returned from 2 weeks in Italy. Partly for work: training elementary math teachers in Vicenza, Italy on College & Career Ready Standards for UT Dana Center International Fellows and Department of Defense Education Activities; and partly for leisure: touring Venice, Cinque Terre, Florence, Tuscany and Rome with my husband, sister, and brother-in-law. The first thing I noticed was the elevators have negative numbers to indicate those floors below ground zero (i.e. what we usually call floor 1 or Lobby in the U.S.)   It’s not the first time I’ve noticed this – in England, in Paris, in Germany – all these other countries indicate on their elevators the ground floor to be 0, the floors above ground 0 are 1, 2, 3…. and the floors below ground zero are -1, -2, -3….

This way of numbering elevators makes sense. Much more sense than Floor 1, or Lobby and then Basement, Basement2 (or LL1, LL2) – which is our typical way of indicating the ground floor (1) and the floors below ground level (Basements/Lower Levels). If you were a young child living in these countries and taking the lifts (or elevators), you are regularly exposed to integer numbers – with a contextual connection that the ground floor of a building is ground 0, and the floors below the ground are negative numbers, and the floors above the ground are positive numbers. It may not even be explicitly explained to young children, though they would be using the terms ‘negative 1’ or ‘negative 2’ to go down below the ground floor. They will have this repeated exposure so when they are ‘officially’ taught about negative numbers in school, they have an immediate connection to prior knowledge about the numbers in an lift/elevator and can make a real-world connection. Negative numbers won’t be new or hard to understand because it’s just the numbers in the elevator. Or – the numbers of the temperature, because let’s not forget, these countries also use the Celsius temperature scale, where freezing is 0, and anything above 0 degrees is above freezing and getting warmer (positive) and anything below 0 degrees is getting colder (negative). The further from 0 in either direction, the warmer or colder you are – again, real-world connection and a contextual understanding of integers.

Number sense. Number lines. Integers. Real-world connections. Just from elevators and temperature scales.

This repeated exposure, informal as it may be, is developing an intuitive understanding of numbers and their real-world meaning. And when students are then exposed to number lines and positive and negative numbers more formally, in a school setting, they already get what that means because it is familiar to them. They can apply what they already know to ‘mathematics’. The formalization makes sense, and connections make sense, and understanding is that much deeper.  This is different in the U.S., where students often struggle with the idea of ‘negative’ numbers and number lines and the distance from zero because we are teaching them something new.  We don’t have a real-world exposure to negative numbers because we use LL or B1 to represent lower than 0, our ground floor is never called 0, it’s 1 or Lobby or G (ground). Our temperature doesn’t have 0 as the freezing mark – it has 32 degrees Farenheit. Think how much easier it would be to connect negative numbers (those numbers smaller than zero) to negative floors or negative temperatures. Freezing makes sense at 0. Negative temperatures are colder than freezing. Positive temperatures are warmer than freezing. 32 degrees – not quite the same one-to-one connection to a number line, is it?

Anyway – my point is that something as simple as changing the numbers on an elevator to integer representations would go a long way in helping young children develop number sense early on so that by the time they get to school, they already have a natural understanding of positive and negative numbers. Early on they would be exposed to the idea of 0 being the ground level, positive numbers mean higher floors or farther away from ground zero, and negative numbers mean lower floors, below the ground, and the further you go below ground, the more negative you get, the farther away from zero you are. Number lines would then be ‘recognizable’ because there’s a contextual connection. (If we could change our temperature scale to Celsius that would be great too, though that one is a lot harder to do).

Relabel elevator buttons to reflect numbers on a number line – a simple change that could go a long way in developing informal number sense in children.



Equity, Equality, and Access to Quality Education – Part 1

Back-to-school is already upon some, and for many will be starting up in the next few weeks. With that in mind, and especially with the very public conversation around school choice and ESSA and accountability for schools, I’ve decided to do a 3-part series on equity, equality, access and quality education. These are ‘buzz’ words that are thrown about in news stories and education settings, but I think often times these words or terms are used incorrectly, or interchangeably, with many people not really understanding what is really being said or what the meaning behind these terms actually might be. With that said, this first part in my series is going to focus on defining these three terms so that we are all on the same page and have a common understanding in which to move forward.

Quality Education

This term is loaded. Everyone wants a quality education for their child and schools and states strive to provide quality education for all their students. But what does this mean? What does this look like? I am going to define it here and in later follow-up posts we will dive more deeply into this.

There are many definitions out there for what quality education means. I actually had a hard time finding an ‘official’ definition, but found the term ‘quality education’ used frequently in vision/mission statements from many education organizations and school districts. Which is interesting – we use the term, yet we don’t define it, so how are we ensuring that students are indeed getting a quality education?

Here is a definition of Quality Education from ASCD (Association of Supervisors of Curriculum Development) and EI (Education International) which I think provides a strong common understanding that will connect to equity, equality and access.

A quality education is one that focuses on the whole child—the social, emotional, mental, physical, and cognitive development of each student regardless of gender, race, ethnicity, socioeconomic status, or geographic location. It prepares the child for life, not just for testing.

A quality education provides resources and directs policy to ensure that each child enters school healthy and learns about and practices a healthy lifestyle; learns in an environment that is physically and emotionally safe for students and adults; is actively engaged in learning and is connected to the school and broader community; has access to personalized learning and is supported by qualified, caring adults; and is challenged academically and prepared for success in college or further study and for employment and participation in a global environment.

A quality education provides the outcomes needed for individuals, communities, and societies to prosper. It allows schools to align and integrate fully with their communities and access a range of services across sectors designed to support the educational development of their students.

A quality education is supported by three key pillars: ensuring access to quality teachers; providing use of quality learning tools and professional development; and the establishment of safe and supportive quality learning environments. (retrieved from

Equity and Equality

The definition of equity in the dictionary is “the state or quality of being just or fair”. The definition of equality is “the state of being equal, especially in status, rights and opportunities”. So what does this mean in terms of education, especially as these two terms are often used interchangeably, when they are very different when it comes to education? Let’s look at each separately in terms of education.

Equality in education would mean that all students are treated the same and are exposed to the same opportunities and experiences and resources. This is deemed as fair because everyone is getting the same instruction, the same assessments, the same resources, the same access to teachers. However, if students are coming into a classroom with different capabilities and different backgrounds – which is the reality no matter where you are – (this means educational knowledge, socio-economic status, family support, etc.), then treating them equally is going to disadvantage most students. No one will get what they truly need to learn – most will not get the appropriate supports and opportunities they need to be successful and to learn to their full potential (as examples, those with special needs would not get the additional supports needed and ‘gifted’ students would not be exposed to more challenging learning experiences they might need).  Everyone gets the same and so everyone suffers to some extent.

Equity in education means that all students get what they need from education, meaning instruction, assessments, resources are distributed so that every students individual needs are met in a fair way so all students can be successful. This relates to the statement above, under quality education, that students have access to personalized learning so that their educational needs are supported, allowing them to be prepared for future success, whether that be a career, college or some other aspiration. So unlike equality in education, equity in education is not the same for everyone, rather it supports everyone with what they need. A students socio-economic status, gender, race, or ability level do not prevent their access to education resources and opportunities. Equity does NOT mean equal. Equity implies an education for each child that meets their specific needs,  both pedagogically and developmentally, so they can be successful in their future endeavors no matter where they live or what their economic status might be.


Access to education is closely tied to equity and equality. I almost didn’t separate it out, but I do think it is a key component behind why many students do NOT get equitable education opportunities. The goal of providing quality education to all students means we are providing them with equitable access to resources and learning opportunities – i.e. students with learning disabilities are getting the extra services and supports they need to be able to learn; students from low-income areas are getting the technology and materials and qualified teachers needed to address their instructional needs; students who excel at math or science are provided with technology and resources that allow them to explore and expand their understandings; students who are artistically or musically inclined are provided with teachers and courses that let them learn and create.

It was hard to find a ‘definition’ for access, because it’s really a process of ensuring students get what they need. I found this nice summation of access on the Glossary of Education Reform that I am going to use to inform our discussion going forward:

 “The term access typically refers to the ways in which educational institutions and policies ensure—or at least strive to ensure—that students have equal and equitable opportunities to take full advantage of their education. Increasing access generally requires schools to provide additional services or remove any actual or potential barriers that might prevent some students from equitable participation in certain courses or academic programs”.

As you can see, all these terms and ideas are related, and it is often hard to think of them in isolation. Hopefully now you have a better understanding of each, and in our follow-up posts, we will explore issues surrounding these using our common understanding.

Pee In the Pool and Other Summer Problems – Problem Solving Resources

As part of my daily brush-up-on education news, I read over my Twitter feed to see what interesting articles or problems the many great educators and educational resource companies I follow might have shared. I laughed so hard when I saw the Tweet from @YummyMath asking how much pee was in the water, with a picture of a large pool and many people in it. Come on – let’s admit it, we have all asked that question at one time or another (especially if you are a parent!!)  It’s a great question. And now I am curious. Where to start? My thoughts are I’d probably need to do some research on the average amount of pee found in a pool and then go from there. The great thing here – Brian Marks from @YummyMath has done that work for me, and even has an engaging ‘lesson starter’ video to go along with the lesson (link to the lesson). So – this would be a really fun problem to start out with that first day of school – funny, lots to notice and wonder about, getting ideas from students on where to begin, what information they might need, etc.

In an early post this summer, Summer Vacation – Use Your Experiences to Create Engaging Lesson Ideas, I talked about how your own summer experiences could raise questions and interesting problem-solving experiences to bring back to the classroom. But – as the tweet from Brian Marks @yummyMath reminded me, there are other amazing educators and resources out there who are already thinking of these questions and even creating the lessons for you. No need to reinvent the wheel, as they say – if there are some interesting questions and resources already being posed and shared, then use them. Saves time, maybe provides some ideas you hadn’t thought of before, or maybe it takes something you did think of and provides some questions or links that you hadn’t found yourself. As educators, we need to really learn to collaborate and share our expertise so that we are not individuals trying to support just our students, but we are educators trying to work together to improve instructional practices and student achievement. Isn’t that what we try to stress within our own classrooms – i.e. working together, communicating, and sharing ideas because this leads to better understandings and new approaches? Same goes for our teaching practices and strategies.

Here are some fun problem-solving resources, with lots of different types of problems, but definitely some ‘summer-related’ things already started for you!

  1. YummyMath – (check out the ‘costco-size’ beach towel activity….that’s funny!)
  2. Mathalicious – (Check out the ‘License to Ill’ lesson – relevant to todays’ debate on Health Care & Insurance)
  3. Tuva|Data Literacy (Check out their lessons and their technology for graphing and analyzing data, and their data sets – so much here!)
  4. RealWorldMath
  5. TheMathForum
  6. Illuminations 
  7. Center of Math
  9. MashUpMath


Education Growth Mindset – So Important for Teachers and Students

I just came back from Kaiserslautern, Germany, where I was working with Department of Defense Education Activities (DoDEA) math teachers as part of the DoDEA/UT Dana Center College and Career Ready Standards Initiative. Our focus this summer, which kicks off the next year of continued support and training, was on helping teachers create a classroom culture of student discourse and a growth mindset that allows students to develop deeper mathematical understanding and become problem-solvers and confident mathematicians. It was a fabulous two days, and the teachers, some who had never explored this idea of ‘growth mindset’, really had some powerful conversations around this idea of providing students productive struggle opportunities and helping them develop this sense that they can solve problems, and they can improve mathematically, and they can learn. It was rather eye opening for many.  How many of us educators have come across those students who give up without even trying because they think they can’t do it? Or they have been so ingrained in the idea that they are ‘bad at math’, so they don’t even try? That’s what this idea is about.

Carol Dweck is a leader is this field of Growth Mindset, and how to motivate and help support this idea of a growth mindset. In fact, the teachers I worked with as part of our workshop, read an article by Dweck that provided some insight into what we as both teachers and parents, inadvertently sometimes do that prevents students/children from having a growth mindset. Something as simple as the way we praise can actually interfere with this growth mindset. More here.

Many of you may be unfamiliar with what a growth mindset is, so I found a great TedTalk from Carol Dweck that explains the idea behind it. As educators, this is something to really think about because we want to develop in our students the willingness to persevere and solve problems that may seem difficult.


Summer Vacation – Use Your Experiences to Create Engaging Lesson Ideas

Sea Turtle at the Big Island, HI. How long do they live? How far do they travel??

I know most students and teachers this time of year are very familiar with Alice Cooper’s song “School’s Out for Summer”  (Seniors are probably focused on the line “school’s out forever….”  Maybe even some teachers!)  No doubt, summer is a time of rejuvenation for students and teachers – a much needed break, both mentally and physically. Note: Those of you who do not teach, and see teachers as having it ‘easy’ with the summers off, might try to spend some time in a teachers shoes before making those ridiculous assumptions, or read up a bit on what teachers actually do (they work more than 40 hours per week) and why summer breaks are so important.

Summer break is fast approaching for many, and some may have even started theirs. I remember those first couple of weeks literally not wanting to even look at anything related to school, students, or teaching. But – as most teachers will attest to, there comes a point where summer vacation weaves into professional learning or preparing for the next school year to begin. We never really turn off completely – we take classes to learn something new, or research some new technology or applications we want to try in class next year, or we revamp some lessons from the previous year. Summer vacation always ends up, at some time or other, connected back to teaching and learning – either personally for our own professional growth, or related to how we can be even better the next school year for our new group of students.

For me personally, everything I do always has me thinking of ways to create an interesting lesson for my students. It’s that pervasive idea that whenever possible, connecting the real world back to what students are learning will make the learning engaging and relevant. Just last week, sitting on the beach in Sea Isle City, NJ, watching this big machine out in the water that was dredging sand to replenish Avalon Beach, all I could think about were questions I would want my students to investigate.  Just a few of my questions, as I sat there:

  • How much sand is being pulled up? Is it from the same spot (my observation, since the dredge is in a different location each day, is that no it is not)
  • What happens to the sea animals and plant life that are ‘dredged’ up with the sand? Or, is there a filter that only allows sand in?
  • What are the impacts on the sea life?
  • How many hours a day do the dredges run? (seems like 24 hours to me!)
  • How long does beach replenishment last? (if you don’t have any storms to wash it all back to sea) How long does it take to replenish a beach?
  • How many pounds of sand is needed and where do they place the sand?

Lots of questions just from sitting and watching. What a great #STEM lesson this would be for students – there’s math, there’s science, there’s engineering and there’s definitely technology – it’s quite the endeavor. There is probably a ton of data out there and information about sand restoration projects, so you could have students researching, doing the math, checking out the science, investigating the machines used and the manpower needed. I did an initial search and found a couple articles already where I learned things like the grain size of the sand determines where the dredge pulls sand from (has to match the beach they are replenishing).  Pipelines are created to carry the sand from the dredge to the beach (so, how big are those pipelines? What happens after they ‘finish’ – do the pipes get removed?) Sometimes this is done to protect sea life, often times to protect commercial and residential properties, so this then begs the questions such as what’s the cost (money wise and to the environment), who benefits, what are the potential dangers and damage (to environment/sea life, etc). Here’s just a few articles I found.

My point here is not to give you a lesson on beach restoration. Instead, my point is that I was just sitting on the beach, enjoying my vacation, and saw the

Two clear streams in Costa Rica that when they meet, the chemicals in them react and turn the water blue. Why

machinery and started thinking. Posing questions. Realizing that there could be an amazing #STEM lesson here, which got me excited and doing research and yes – vacation or not – planning for teaching.  I think it is a natural tendency as a teacher to see a ‘lesson’ pretty much anywhere we go, which is what I want to emphasize here. Even on vacation, if you have a great idea based on something you are doing or seeing, some idea you think would be an engaging lesson, go with it. Take some pictures. Write down some ideas. Do some research. Use your own experiences and ‘time off’ to discover teaching ideas and spark your own enthusiasm for the next school year. Bring your vacation into your classroom and build relevant, real-world, multi-content lesson ideas that will spark student engagement, questioning, critical thinking and problem-solving.

Enjoy yourself and your summer, but never stop learning and looking for great ideas to bring back to your classroom.